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1. Preliminaries

1.1. Basic Definitions.

Definition 1. A polynomial with real coefficients is a function of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0,

where ai ∈ R for i = 0, . . . , n, and an 6= 0 unless f(x) = 0.
We call n the degree of f .
We call the ai’s the coefficients of f .
We call a0 the constant coefficient of f , and set CC(f) = a0.
We call an the leading coefficient of f , and set LC(f) = an.
We say that f is monic if LC(f) = 1.

The zero function is the polynomial of the form f(x) = 0.
A constant function is a polynomial of degree zero, so it is of the form f(x) = c

for some c ∈ R. The graph of a constant function is a horizontal line. Constant
polynomials may be viewed simply as real numbers.

A linear function is a polynomial of degree one, so it is of the form f(x) = mx+b
for some m, b ∈ R with m 6= 0. The graph of such a function is a non-horizontal
line.

A quadratic function is a polynomial of degree two, of the form f(x) = ax2+bx+c
for some a, b, c ∈ R with a 6= 0.

A cubic function is a polynomial of degree three.
A quartic function is a polynomial of degree four.
A quintic function is a polynomial of degree five.

1.2. Basic Facts. Let f and g be real valued functions of a real variable. We can
define the addition, subtraction, product, and quotient of these functions pointwise;
for example, (f + g)(x) = f(x) + g(x) for all x ∈ dom(f) ∩ dom(g).

The sum, difference, product, and composition of two polynomials is also a
polynomial, and we can determine its degree as follows.

• deg(f + g) = max{deg(f),deg(g)}
• deg(f · g) = deg(f) + deg(g)
• deg(f ◦ g) = deg(f) · deg(g)

An exception to the first rule exists when deg(f) = deg(g) and LC(f)−LC(g) = 0.
The quotient of two polynomials is normally not a polynomial; it is a rational
function.
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2. Quadratic Polynomials

2.1. The Quadratic Formula. A quadratic polynomial is a polynomial of degree
two. It is traditional to write this as

f(x) = ax2 + bx + c.

The zeros of a function f are the solutions to the equation f(x) = 0. If a ∈ R
and f(a) = 0, then (a, 0) is an x-intercept of f ; thus finding zeros is important for
graphing. One of the most useful theorems in mathematics provides a formula to
find the zeros of a quadratic function.

Theorem 1 (Quadratic Formula). Let f(x) = ax2 + bx+ c. Then the solutions to
the equation f(x) = 0 are given by

x =
b−
√
b2 − 4ac

2a
.

Proof. The equation f(x) = 0 can be solved using the method of completing the
square:

ax2 + bx + c = 0⇒ x2 +
b

a
= − c

a

⇒ x2 +
b

a
+

b2

4a2
=

b2

4a2
− c

a

⇒
(
x +

b

2a

)2

=
b2 − 4ac

4a2

⇒ x +
b

2a
= ±
√
b2 − 4ac

2a

⇒ x =
−b±

√
b2 − 4ac

2a
�

2.2. The Discriminant. The discriminant of f(x) = ax2 + bx + c is

∆ = b2 − 4ac.

This is the quantity under the radical, and so determines the number of real solu-
tions the equation f(x) = 0.

• If ∆ > 0, then f(x) = 0 has two distinct real solutions.
• If ∆ = 0, then f(x) = 0 has a unique real solution.
• If ∆ < 0, then f(x) = 0 has no real solutions.

If ∆ < 0, the solutions are complex; we will investigate this later.
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3. Polynomial Division

3.1. The Division Algorithm. The Division Algorithm for Integers states that
for every m,n ∈ Z, there exist unique integers q, r ∈ Z such that

n = mq + r and 0 ≤ r < m.

We call n the dividend, m is the divisor, q is the quotient, and r is the remainder.
We know this is true, because we know how to find q and r; we use long division
to divide m into n.

An analogous situation exists for polynomials, which we state in the form of a
theorem.

Theorem 2 (Division Algorithm for Polynomials). Let f and g be polynomials
with real coefficients. Then there exist polynomials q and r with real coefficients
such that

g = fq + r and deg(r) < deg(f).

Reason. Use long division to divide f into g. This process stops when the remainder
is of degree less than that of f . Let q be the quotient and let r be the remainder. �

3.2. The Remainder Theorem. We divide by a linear polynomial and use the
division algorithm to show that remainders are values of the dividend.

Theorem 3 (Remainder Theorem). Let a ∈ R and set f(x) = x− a. Then f is a
polynomial with real coefficients. Let g be another polynomial with real coefficients,
are write g = fq + r, with deg(r) < deg(f). Then r ∈ R, and g(a) = r.

Proof. A polynomial of degree 0 is a real number, and since deg(r) < deg(f) = 1,
we see that deg(r) = 0, so r ∈ R. Thus g(x) = f(x)q(x) + r for every x ∈ R. Plug
in x = a to see that

g(a) = f(a)q(a) + r

= (a− a)q(a) + r because f(x) = (x− a)

= 0 · q(a) + r

= r

�
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3.3. The Factor Theorem. If m,n ∈ Z, we say that m divides n, and write m | n,
if there exists k ∈ Z such that n = km. That is, m divides n if m is a divisor of
n, or if m is a factor of n, or if n is a multiple of m. These definitions have direct
analogues for polynomials.

Definition 2. Let f and g be polynomials with real coefficients. We say that f
divides g, and write f | g, if there exists a polynomial k such that g = kf . In this
case, we may say that f is a factor of g, or that g is a multiple of f .

We provide the precise condition under which a linear polynomial is a factor of
another polynomial.

Theorem 4 (Factor Theorem). Let g be a polynomial with real coefficients and let
a ∈ R. Set f(x) = x− a. Then g(a) = 0 if and only if f | g.

Proof. Suppose that f | g. Then, g = kf for some polynomial k. Then g(x) =
k(x)f(x) for every x ∈ R. Thus g(a) = k(a)f(a) = k(a)(a− a) = k(a) · 0 = 0.

On the other hand, suppose that g(a) = 0. Then 0 is the remainder when g is
divided by f ; that is, if q is the quotient and r is the remainder when g is divided
by f , we have

g = fq + r = fq + 0 = fq,

so f | g. �

The Factor Theorem says that the zeros of g produce linear factors of g, and
vice versa. Thus in order to find the x-intercepts of a polynomial g, we factor it.

Example 1. Find all x-intercepts of the graph of g(x) = x3 − 3x2 + x− 3.

Solution. We use the technique of “factoring by grouping” to see that

g(x) = (x− 3)(x2 + 1).

Since x2 + 1 = 0 has no real solutions, the Factor Theorem tells us that the only
real zero of f is x = 3. Thus the only x-intercept of f is (3, 0). �

3.4. Synthetic Division. Let g be a polynomial with real coefficients and let
a ∈ R. Set f(x) = x − a. The process of dividing f into g can be written with
less notation by using synthetic division, which will be demonstrated in class. In
essence, this consists of writing the division tableau without writing down any of
the x’s.

It is essential to realize that synthetic division produces both the quotient and
the remainder of g divided by f , and that the remainder theorem dictates that the
remainder is the value of f at a.

It is worth noting that synthetic division is the exact process used by efficient
computer algorithms to evaluate polynomials, although this is not expressly stated.
We can rewrite the polynomial in Horner’s form:

a0 + a1x + · · ·+ an−1x
n−1 + anx

n = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan) · · · ).
Now evaluating Horner’s form is identical to performing synthetic division and
applying the remainder theorem to obtain the value of the polynomial.

Example 2. Let f(x) = x4 + 2x3 + 3x2 + 4x + 5. Then f(x) = 5 + x(4 +
x(3 + x(2 + x))). For a given x, evaluating the first form four additions and nine
multiplications, whereas evaluating the second form requires four additions but only
three multiplications.
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3.5. Irreducible Polynomials.

Definition 3. Let g be a nonconstant polynomial with real coefficients. We say
that g is reducible over R if there exist polynomials f, k with real coefficients and
of lower degree than g, such that g = kf . Otherwise, g is irreducible over R.

We say that g is factored completely over R if it its written as a product of
polynomials which are irreducible over R.

If we can factor a polynomial completely, the Factor Theorem says that this will
produce all of the zeros of the polynomial.

It is obvious that any polynomial can be factored into the product of a constant
polynomial and a polynomial of the same degree. A factorization of a polynomial
into polynomials of lower degree is sometimes called a nontrivial factorization.

If f is a quadratic polynomial with real coefficients, any nontrivial factorization
produces linear factors, which by the Factor Theorem produce real zeros. But if
the discriminant is negative, then f has no real zeros, so we see that f is irreducible
if and only if its discriminant is zero.

We have a similar idea with respect to factorization over the rationals.

Definition 4. Let g be a polynomial with rational coefficients. We say that g
is reducible over Q if there exist polynomials f, k with rational coefficients and of
lower degree than g, such that g = kf . Otherwise, g is irreducible over Q.

In this case, if f is a quadratic polynomial with integer (or rational) coefficients,
it is reducible over Q if and only if the discriminant ∆ is a perfect square. Otherwise,
although f has a nontrivial factorization over R, it has none over Q.

4. Rational Zeros

Definition 5. Let f be a polynomial of degree n with real coefficients. Then there
exist real numbers a0, a1, . . . , an, with an 6= 0, such that

f(x) = anx
n + · · ·+ a1x + a0.

The constant coefficient of f is a0, and is denoted CC(f).
The leading coefficient of f is an, and is denoted LC(f).
That is,

CC(f) = a0 and LC(f) = an.

Notice that (x − 2)(x − 3) = x2 − 5x + 6. It is easy to see that the constant
coefficient 6 must be the product of the constant coefficients 2 and 3 of the linear
factors. We generalize this with a theorem on rational zeros. First we note that

if a ∈ Q, then there exist integers p, q such that a =
p

q
. We can pick p and q

uniquely by insisting that q is positive, and that it has no common factors with
p. Let gcd(p, q) denote the greatest common divisor of p and q; this is the largest
common divisor of p and q.
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Theorem 5 (Rational Zeros Theorem). Let f be a polynomial with integer coef-

ficients, and let a ∈ Q. Then there exist integers p, q ∈ Z with a =
p

q
such that

gcd(p, q) = 1. If f(a) = 0, then p | CC(f) and q | LC(f).

Proof. Write f as
f(x) = anx

n + · · ·+ a1x + a0.

Plug in x =
p

q
to get

an
p

q

n
+ · · ·+ a1

p

q
+ a0 = 0.

Clear denominators by multiplying though by qn to get

anp
n + an−1p

n−1q + · · ·+ a1pq
n−1 + a0q

n = 0.

Now
a0q

n = −p(anp
n−1 + an−1p

n−2q + · · ·+ a1q
n−1).

Since p divides the right hand side, is must also divide the left hand side; however,
since p and q have no common factors, we see that p divides a0.

Similarly,
anp

n = −q(an−1p
n−1 + · · ·+ a1pq

n−2 + a0q
n−1).

Since q divides the right hand side, is must also divide the left hand side; however,
since p and q have no common factors, we see that q divides an. �

Example 3. Factor f(x) = 2x3 − x2 − x− 3.

Proof. By the Rational Zeros Theorem, the only possibly rational zeros are

±1, ±3, ±1

2
, and ± 3

2
.

We use synthetic division to test these one at a time; we find that f( 3
2 ) = 0. Thus

f(x) = (x− 3
2 )(2x2 + 2x+ 2) = (2x−3)(x2 +x+ 1). Since ∆(x2 +x+ 1) = −3 < 0,

this is a complete factorization over R. �
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5. Complex Numbers

5.1. Basic Definitions.

Definition 6. A complex number is an expression of the form x+iy, where x, y ∈ R
and i is a new symbol such that i2 = −1. Let C denote the set of all complex
numbers, so that

C = {x + iy | x, y ∈ R and i2 = −1}.

We can add and multiply complex numbers by treating i like a variable, combin-
ing like terms, and replacing all occurrences of i2 with −1. Thus, if z1 = x1 + iy1

and z2 = x2 + iy2, then

• z1 + z2 = (x1 + x2) + i(y + 1 + y2);
• z1 · z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

The real part of z = x + iy is
<(z) = x.

The imaginary part of z = x + iy is

=(z) = y.

The modulus (aka length, magnitude, or norm) of z = x + iy is

|z| =
√

x2 + y2.

Note that |z| ∈ R.
The conjugate of z = x + iy is

z = x− iy.

We have the following properties of conjugate.

• |z| = |z| ∈ R
• z + z = 2<(z) ∈ R
• zz = x2 + y2 = |z|2 ∈ R

We can use the conjugate to divide complex numbers. Thus if z1 = x1 + iy1 and
z2 = x2 + iy2, then

z1
z2

=
z1z2
z2z2

=
(x1x2 + y1y2) + i(x2y1 − x1y2)

x2
2 + y22

=
(x1x2 + y1y2)

x2
2 + y22

+ i
x2y1 − x1y2
x2
2 + y22

.

The result has been put in the standard form of a complex number, which is a+ ib
where a, b ∈ R.

It is important to understand that real number are complex numbers; if x ∈ R,
then x = x + i · 0, so that x = <(x).

We have
N ⊂ Z ⊂ Q ⊂ R ⊂ C.
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5.2. Relationship to Quadratic Functions. It is traditional to denote the in-
dependent variable over C by the letter z. We now adopt that convention.

Let f(z) = az2+bz+c, where a, b, c ∈ R. If ∆(f) < 0, then f has no real zeros. In

this case, however, we consider that
√
b2 − 4ac = i

√
4ac− b2, where

√
4ac− b2 ∈ R.

Then the zeros of a a quadratic function with negative discriminant may be view
and complex zeros.

Thus let w =
−b
2

+ i

√
4ac− b2

2
, so that f(w) = 0. Then w =

−b
2
− i

√
4ac− b2

2
is the other zero of f , and f factors as

f(z) = a(z − w)(z + w).

On the other hand, let w ∈ C be an arbitrary complex number, and set

f(z) = (z − w)(z + w)

= z2 − (w + w)z + ww

= z2 − 2<(w)z + |w|2

Then f is a polynomial with real coefficients. Note that f is cannot be factored
over R; that is, f is an irreducible quadratic. Every complex number is the zero of
an irreducible quadratic polynomial. Are there any polynomials of degree three or
greater which are irreducible over R?

5.3. The Fundamental Theorem of Algebra. We can define polynomials with
complex coefficients in the same manner as polynomials over R; we simply allow
the coefficients to be complex. For example, x2 − i is a polynomial with complex
coefficients. Since real numbers are complex, we view the set of polynomials with
real coefficients as a subset of the set of polynomials with complex coefficients. So
when we talk about a polynomial with complex coefficients, we are not ruling out
the possibility that the polynomial has real, or even integer, coefficients.

The Division Algorithm, Remainder Theorem, and Factor Theorem all remain
true for polynomials with complex coefficients.

Complex number were discovered in the fifteenth century, and it quickly became
apparent that they were a useful idea for understanding the factors of polynomials
with real coefficients. It was long suspected that every polynomial equation has a
solution in the complex numbers, but this remained unproven until Gauss supplied
a (partial) proof in his doctoral thesis.

Theorem 6 (Fundamental Theorem of Algebra). Let f be a nonconstant polyno-
mial with complex coefficients. Then there exists a ∈ C such that f(a) = 0.

There are several proofs of the Fundamental Theorem, but each of them is too
deep for our consideration at this point. So we accept the Fundamental Theorem
as given, and move forward to understand how completely polynomials with real
or complex coefficients factor. The latter case is relatively easy, as follows.
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Theorem 7 (Complete Factorization Theorem). Let f be a nonconstant polynomial
with complex coefficients. Then f is a product of linear factors.

Proof. By the fundamental theorem, there exists a1 ∈ C such that f(a1) = 0. By
the Factor Theorem, f(z) = (z − a1)f2(z) for some polynomial f2 with complex
coefficients.

Similarly, f2 has a complex zero, say f2(a2) = 0, so that f2 = (x− a2)f3(z) for
some polynomial f3. Thus f(z) = (z − a1)(z − a2)f3(z).

Continuing in this way, we see that there exist a1, a2, . . . , an ∈ C such that

f(z) = (z − a1)(z − a2) · · · (z − an),

where n = deg(f). It should be noted that the zeros a1 through an are not neces-
sarily distinct. �

So, polynomials with complex coefficients factor completely into linear factors.
That is, the only polynomials with are irreducible over C are linear. We now proceed
to analyze how completely it is possible to factor polynomials over R. Conjugates
pairs play a large role in this, so we begin with a lemma regarding conjugation.

Lemma 1. Let z1, z2 ∈ C. Then z1 + z2 = z1 + z2.

Proof. Write z1 = x1 + iy1 and z2 = x2 + iy2 where x1, y1, x2, y2 ∈ R. Then

z1 + z2 = (x1 + x2) + i(y1 + y2)

= (x1 + x2)− i(y1 + y2)

= x1 − iy1 + x2 − iy2

= z1 + z2.

�

Lemma 2. Let z1, z2 ∈ C. Then z1 · z2 = z1 · z2.

Proof. Write z1 = x1 + iy1 and z2 = x2 + iy2 where x1, y1, x2, y2 ∈ R. Then

z1 · z2 = (x1 − iy1)(x2 − iy2)

= x1x2 − ix1y2 − iy1x2 + i2y1y2

= (x1x2 − y1y2)− i(x1y2 + x2y1)

= (x1x2 − y1y2) + i(x1y2 + x2y1)

= z1 · z2
�

Lemma 3. Let z ∈ C. Then z ∈ R if and only if z = z.

Proof. Let z = x + iy. If z ∈ R, this means that y = 0, so z = x − i · 0 = x, so
z = z. On the other hand, if z = z, then x− iy = x+ iy, so −iy = iy, so y = 0. �
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Lemma 4. Let f be a polynomial with real coefficients, and let z ∈ C Then f(z) =
f(z).

Proof. Recall that if x ∈ C, then x ∈ R if and only if x = x.
Write f(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0, where an, . . . , a0 ∈ R. Now

f(z) = anzn + an−1zn−1 + · · ·+ a1z + a0

= anzn + an−1zn−1 + · · ·+ a1z + a0 by Lemma 1

= an z
n + an−1 z

n−1 + · · ·+ a1 z + a0 by Lemma 2

= anz
n + an−1z

n−1 + · · ·+ a1z + a0 by Lemma 3

= f(z)

�

Theorem 8 (Conjugate Pairs Theorem). Let f be a polynomial with real coeffi-
cients, and let a ∈ C If f(a) = 0, then f(a) = 0.

Proof. Since 0 ∈ bR, 0 = 0. Thus f(a) = f(a) = 0 = 0. �

Theorem 9 (Linear and Quadratic Factors Theorem). Every polynomial with real
coefficients can be factored into a product of linear and irreducible quadratic factors.

Proof. We have previously seen that if w ∈ C, then (z −w)(z −w) is a polynomial
with real coefficients.

Let f be a polynomial with real coefficients. By the Complete Factorization
Theorem,

f(z) = (z − a1)(z − a2) · · · (z − an),

where n = deg(f). By the preceding theorem, the complex zeros occur in con-
jugate pairs; we can multiply the factors corresponding to each such pair to et a
quadratic factor with real coefficients. This results in f being factored into linear
and irreducible quadratic factors. �
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